

Systematic Mechanistic Investigation on Cerium Catalyzed Alkane Functionalization ——Who got it wrong, Cl or RO radical?

Qing An

20231026 || Zuo Group || SIOC

Proposed catalytic cycle

In this proposed catalytic cycle:

- [Ce(OR)Cl₅]²⁻ as the catalytically relevant photoactive species
- ▷ [Ce(OR)Cl₅]²⁻ generated RO· under LMCT excitation
- RO· mediated HAT as rate- & selectivity determining step

The possibility of chlorine radical and related complexes as HAT agents

Regioselectivity investigations: original condition & metal-free condition

> Chlorine radical and related complexes were not responsible for selectivity control

The possibility of chlorine radical and related complexes as HAT agents

TD-DFT calculation for HAT process between chlorine radical and CH₃OH

DLNPO-CCSD(T)/cc-pVTZ-SMD(MeCN)//B3LYP-D3(BJ)/def2-SVP level

Chlorine radical-alcohol complex was precluded by unreasonable HAT transition and barrierless HAT between chlorine radical and CH₃OH

Walsh & Schelter, Science 2021, 372, 847

TD-DFT: [CI···ROH] • as HAT agent was supported by a low-energy transition state

Cerium alkoxide pentachloride complexes as photoactive species

- Preparation and characterization for cerium alkoxide complexes
 - Preparation and Isolation

^achemical shift were determined relative to the residual peak of CH₃CN (1.94 ppm).

Cerium alkoxide pentachloride complexes as photoactive species

- Preparation and characterization for cerium alkoxide complexes
 - UV-vis spectroscopy and steady-state photolysis (375 nm laser irradiation)

• DFT-calculation: Hole-electron analysis of S0 \rightarrow S6 excitation of [Ce(OMe)Cl₅]²⁻

Only the Ce–O bond was significantly elongated during the relaxation

Cerium alkoxide pentachloride complexes as photoactive species

In situ generation of cerium alkoxide complexes under catalytic conditions

➢ [Ce(OR)Cl₅]^{2−} can be generated in the induction period of catalytic reaction

Walsh & Schelter, Science 2021, 372, 847

¹H NMR, UV-vis, luminesence: [Ce(OR)Cl₅]²⁻ cannot be generated in catalytic condition (no base)

■ Spin-trapping experiments with DMPO as trapping reagent: [Ce(OCH₃)Cl₅]²⁻

in accordance with data reported by Dagousset

➤ [Ce(OCH₃)Cl₅]²⁻ would generate methoxy radical under LMCT excitation

■ Spin-trapping experiments with DMPO as trapping reagent: [Ce(O^{*i*}Pr)Cl₅]²⁻, [Ce(O^{*t*}Bu)Cl₅]²⁻

Hartung, J., et al. Org. Biomol. Chem. 2006, 4 , 2313.

Dagousset, G., et al. Angew. Chem. Int. Ed. 2018, 57, 13790.

▷ [Ce(OR)Cl₅]²⁻ would generate alkoxy radical under LMCT excitation

Spin-trapping experiments with PBN as trapping reagent: [Ce(OCH₃)Cl₅]²⁻

Dagousset, G., et al. Angew. Chem. Int. Ed. **2018**, *57*, 13790.

in accordance with data reported by Dagousset

➢ [Ce(OCH₃)Cl₅]^{2−} would generate methoxy radical under LMCT excitation

■ Spin-trapping experiments with PBN as trapping reagent: [Ce(OCH₂CCl₃)Cl₅]²⁻, [CeCl₆]²⁻

TD-DFT: [Ce(OR)Cl₅]²⁻ would generate chlorine radical, not alkoxy radical under LMCT excitation

Detection of the signal of chlorine radical and related complexes

in accordance with data reported by Ingold, K. U. et al., J. Am. Chem. Soc. **1985**, 107, 5464.

> [Cl…ROH] • would not form at catalytically relevant alcohol concentration

Transient absorption experiments for [CeCl₆]²⁻

➢ [CeCl₆]^{2−} would generate chlorine radical under LMCT excitation

Transient absorption experiments for [CeCl₆]²⁻ in the presence of benzene or alcohols

[Cl…ROH] • would not form at catalytically relevant alcohol concentration

Transient absorption experiments for [Ce(OCH)₃Cl₅]²⁻

no absorption in the range of 320–350 nm precluded the generation of Cl·

> Chlorine radical was precluded and alkoxy radical was confirmed

Kinetic investigations on the HAT process

Kinetic studies on cyclohexane amination

• Reaction order: First order in alkane; zero order in DBAD and [Ce(OCH₃)Cl₅]²⁻

▷ [Ce(OCH₃)Cl₅]²⁻ was catalytically relevant intermediate & CH₃O • mediated HAT was RDS

Kinetic investigations on the HAT process

DFT calculations on the radical-mediated HAT process

DLNPO-CCSD(T)/cc-pVTZ-SMD(MeCN)//B3LYP-D3(BJ)/def2-SVP level

With Prof. Hong @ ZJU

CH₃O• mediated HAT was the rate-determining step (RDS) for the overall amination

Kinetic investigations on the HAT process

Competitive KIE experiments

^aYields and ratios were determined by GC-FID.

> Alkoxy radicals were exclusive HAT species in the original conditions

Regioselectivity investigations on the amination of feedstock alkanes

Regioselectivity investigations: premade complex conditions & chloride-free conditions

^aYields and ratios were determined by GC-FID.

- Alkoxy radicals were the exclusive HAT species and chloride only as supporting ligand
- Walsh & Schelter, Science 2021, 372, 847

¹H NMR: identical ratios were observed in the absence or presence of CCl₃CH₂OH

Regioselectivity investigations on the amination of feedstock alkanes

Regioselectivity investigations: premade complex conditions & chloride-free conditions

^aYields and ratios were determined by GC-FID.

> Alkoxy radicals were the exclusive HAT species and chloride only as supporting ligand

DFT calculations on photoexcitation and radical-mediated HAT

The possibility of chlorine radical and related complexes as selective HAT agents

> Alkoxy radical mediated HAT is rate- and selectivity-determining step

Importance of Ce/ROH loading ratio

> High ratio of alcohol is necessary to ensure alkoxy radicals as predominant HAT agents

■ Walsh & Schelter's work vs. this work

1. *in situ* formation of [CeORCl_n] (photoactive species)

Walsh and Schelter, Science 2021

- **Observations:** Mixing of [NEt₄]₂[CeCl₆] with Cl₃CCH₂ONa generated [Ce(OCH₂CCl₃)Cl₅]²⁻ However, mixing [NEt₄]₂[CeCl₆] with Cl₃CCH₂OH does not generate [Ce(OCH₂CCl₃)Cl₅]²⁻, as determined by ¹H NMR and UV-Vis.
- Observation: Irradiation of mixture of [NEt₄]₂[CeCl₆] and Cl₃CCH₂OH does not generate [Ce(OCH₂CCl₃)Cl₅]²⁻, as determined by UV-Vis.
- Conclusion: Alcohol coordination to [Ce] does not occur.

This work

- **Observations:** Mixing of $[CeCl_6]^{2-}$ with NaOR generated the corresponding $[Ce(OR)Cl_5]^{2-}$ complex. Mixing $[CeCl_6]^{2-}$ with ROH generated the corresponding $[Ce(OR)Cl_5]^{2-}$ complexes in the presence of base, such as NaHCO₃ or $[BocNNHBoc]^{-}$, as determined by XRD and ¹H NMR.
- Observation: Irradiation of mixture of CeCl₃, DBAD, and ROH generated the corresponding [Ce(OR)Cl₅]^{2–} complexes, as determined by ¹H NMR.
- Conclusion: Alcohol coordination to [Ce] does occur through generation of basic [BocNNHBoc]⁻ through photoinduced reduction of DBAD by [Ce(III)] during induction period.

Walsh & Schelter's work vs. this work

2. photoexcitation to release alkoxy radical (photo-generated radical species)

Walsh and Schelter, Science 2021

- **Observations:** TD-DFT calculation indicated the excited state of [CeOCH₂CCl₃Cl₅]^{2–} leads to chlorine radical loss rather than RO• loss.
- Observation: No direct experimental study of heteroatom-centered radical generation from [Ce(OR)Cl₅]²⁻ was described. Irradiation of [NEt₄]₂[Ce(OCH₂Cl₃)Cl₅] in CD₃CN generated ClCD₂CN, NCCD₂CD₂CN, "[NEt₄]₂[Ce^{III}Cl₅]", and DOCH₂Cl₃ "presumably" through a "a quick acid-base reaction between DCl and" [Ce]-(OCH₂CCl₃) species after presumed Cl-HAT.

This work

- **Observations:** TD-DFT with more comprehensive analysis of MOs identified S0 to S6 featuring viable RO-to-Ce LMCT; structural relaxation indicated that Ce–OR bond was significantly elongated
- Observation: 1. Operando EPR spin-trapping experiments with [Ce(OR)Cl₅]²⁻ confirmed RO• generation (R = Me, Cl₃CCH₂, ^tBu), and precluded the generation of chlorine radical by comparison to EPR spin-trapping experiments with CeCl₆²⁻. In the case of [Ce(O^tBu)Cl₅]²⁻, methylated spin-trap products were observed, presumably stemming from scission of tert-butoxy radical to generate methyl radical.

2. Transient absorption experiments with $[Ce(OCH_3)Cl_5]^{2-}$ precluded the generation of chlorine radical in contrast to TA experiments

Walsh & Schelter's work vs. this work

Conclusion: Alkoxy radical cannot be generated even if [Ce(OCH₂CCl₃)Cl₅]²⁻ is relevant photoactive species with $CeCl_6^{2-}$ and Cl_2 photolysis, supported the generation of methoxy radical via the observation of CH_3OPPh_3 radical.

Conclusion: LMCT excitation of [Ce(OR)Cl₅]²⁻ exclusively generates RO•.

3. alkoxy radical-mediated HAT (C–H abstraction species)

Walsh and Schelter, Science 2021

• **Observations:** In DFT calculation, chlorine radical forms a stabilized complex with free alcohol, with substantial spin density on O. No computed pathway for HAT is presented, not a computed explanation of varying regioselectivities for different chlorine radical-alcohol complexes.

• **Observation:** Radical trapping experiments are provided in support of chlorine

This work

- **Observations:** Transient absorption experiments with Cl₂ photolysis in the absence and presence of alcohols indicated no complexation between chlorine radical and alcohols, whereas complexation between chlorine radical and benzene has been confirmed via the detection of the new absorption band.
- **Observation:** In high-level DFT calculations, chlorine radical-alcohol complex does not

Walsh & Schelter's work vs. this work

radical-alcohol complex, which require the assumption that alkoxide radical is not generated.

- **Observation:** Addition of ^tBuOH to [CeCl₆]²⁻ catalyzed alkane amination resulted in altered regioselectivity cf. [CeCl₆]²⁻ alone (2,3-dimethylbutane).
- **Observation:** Addition of Cl₃CH₂OH to [CeCl₆]²⁻ catalyzed alkane amination resulted in identical regioselectivity cf. [CeCl₆]²⁻ alone (n-hexane).

have a viable HAT pathway. The only feasible channel for this radical complex is to dissociate the alcohol and undergoes a classic, barrierless chlorine radical mediated HAT. The only productive pathway we can find for the reaction between chlorine radical and alcohol is a barrierless α -C-H abstraction of alcohol.

- **Observation**: Transient absorption experiments with [CeCl₆]²⁻ show an identical kinetic trace of chlorine radical in the absence or presence of various alcohols, precludes the formation of radical complex
- **Observations**: Alkane HAT by chlorine radical generated through organophotoredox SET conditions shows no regioselectivity effect of added alcohols. When tBuOH is added, b-C–H of tBuOH is functionalized, presumably through chlorine radical HAT

Walsh & Schelter's work vs. this work

Observation: Alcohol-controlled regioselectivities were observed in our original condition. The selectivity ratio in alkane amination enabled by Cl_3CH_2O • and Cl• are roughly identical, as revealed by chloride-free conditions and DFT calculations. As shown by Bietti and Houk, the polar effect renders highly e-deficient Cl_3CH_2O • the most reactive and least selective among RO•.

• **Observations**: Methylated byproduct from b-scission of ^tBuO• obtained with C–H aminations mediated by [CeO^tBuCl₅]²⁻ or CeCl₃/TBACl/^tBuOH, supporting the intermediacy of tertbutoxy radical.

• **Observations**: Identical KIE and regioselectivity observed with [Ce(OR)Cl₅]²⁻ and original catalytic conditions

Walsh & Schelter's work vs. this work

- Conclusion: Chlorine radical, chlorine radical-alcohol complexes act as HAT agents, masking alkoxy radicals.
- **Observation**: Observations: Identical regioselectivity observed with chloride-free conditions (Ce/benzoate/ROH) and original catalytic conditions. As the chloride-free conditions have precluded any involvement of chlorine radical or chlorine radicalalcohol complex, the identical selectivity in propane, butane and hexane amination, and the same large primary KIE in methane amination, indicate alkoxy radical-mediated HAT in our original report.
- Conclusion: Chlorine radical-alcohol complexes, while thermodynamically possible, do not form in any relevant context. Furthermore, identical alkoxy radical is the primary species responsible for C–H abstraction in original catalytic conditions, "chloride-free" conditions, and pre-formed heteroleptic Ce(IV) chloride alkoxide complexes, as indicated by kinetic and regioselectivity measures.